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Abstract

In this work, we study Unsupervised Do-
main Adaptation (UDA) in a challenging self-
supervised approach. One of the difficulties
is how to learn task discrimination in the ab-
sence of target labels. Unlike previous litera-
ture which directly aligns cross-domain distri-
butions or leverages reverse gradient, we pro-
pose Domain Confused Contrastive Learning
(DCCL) to bridge the source and the target do-
mains via domain puzzles, and retain discrim-
inative representations after adaptation. Tech-
nically, DCCL searches for a most domain-
challenging direction and exquisitely crafts do-
main confused augmentations as positive pairs,
then it contrastively encourages the model to
pull representations towards the other domain,
thus learning more stable and effective domain
invariances. We also investigate whether con-
trastive learning necessarily helps with UDA
when performing other data augmentations. Ex-
tensive experiments demonstrate that DCCL
significantly outperforms baselines.

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019; Yang et al., 2019) have yielded
considerable improvements with datasets drawing
from various sources. However, the lack of porta-
bility of language model to adapt to a new textual
domain remains a central issue (Gururangan et al.,
2020), especially when the training set and testing
set do not follow the same underlying distribution
(changing of topic and genres) - usually referred to
as domain shift. In this paper, we focus on studying
Unsupervised Domain Adaptation (UDA). UDA
aims at designing adaptation algorithms that at-
tempt to generalize well on the target domain by
learning from both labeled samples from the source
domain and unlabeled samples from the target do-
main. Studying UDA fits real-world scenarios since
labeled data in the target domain is usually absent.
Moreover, advances in UDA will also help out-of-
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Figure 1: Domain puzzles that are domain-confused
and overlook domain-related information, could be re-
garded as lying in an intermediate domain that aims to
pull source and target samples closer to each other and
bridge the two domains by learning domain invariant
representations.

distribution generalizations (Ramponi and Plank,
2020; Krueger et al., 2021).

Extensive algorithms have been proposed to miti-
gate the domain shift problem, for example, domain
adversarial neural network (DANN) (Ganin et al.,
2016) and distribution matching (Zhuang et al.,
2015). For DANN, the training process of joint
optimization is unstable, requiring extensive effort
to tune the hyperparameters (Shah et al., 2018; Du
et al., 2020; Karouzos et al., 2021). As for distri-
bution matching, it is very difficult to preserve the
discriminative power of the model on the target task
while trying to perform instance level alignment
(Saito et al., 2017; Lee et al., 2019). To this end,
it is essential to develop stable and effective solu-
tions to learn domain invariance and instance-wise
matching for UDA.

Recent advances in self-supervised learning
(SSL), such as contrastive learning (CL), have been
proven effective at instance level by leveraging raw
data to define surrogate tasks that help learn repre-
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sentations (Chen et al., 2020a; Khosla et al., 2020;
He et al., 2020; Chen et al., 2020b). CL benefits
from treating instances as classes and conducting
data augmentations to generate positive instance
pairs. Regarding CL for UDA, previous works
mark cross-domain images with the same labels
(for example, real and cartoon dogs) as the positive
pairs in contrastive loss (Wang et al., 2021; Park
et al., 2020). However, such methods are not appli-
cable to NLP tasks because of the massive semantic
and syntactic shifts between two cross-domain sen-
tences. Besides, from the domain adaptation per-
spective, constructing cross-domain positive sam-
ples and aligning domain-agnostic pairs have re-
ceived less emphasis in related literature, since pre-
vious works focus on designing label preserving
text transformations, such as back-translation, syn-
onym, dropout and their combinations (Qu et al.,
2021; Gao et al., 2021).

Confronting with limitations mentioned above,
we propose the concept of domain puzzles which
discard domain-related information to confuse the
model, making it difficult to differentiate which
domain these puzzles belong to. Instead of directly
seeking matched sentences across the source and
target domains which is infeasible, we propose to
pull the source (target) data and its corresponding
domain puzzles closer to reduce the domain dis-
crepancy, as shown in Fig. 1. A simple idea to craft
domain puzzles is to mask domain-specific tokens.
However, token-level operations are too discrete
and non-flexible to reflect the complex semantic
change of natural languages. Hence, we aim to seek
better domain puzzles that retain high-confidence
predictions and task-discriminative power in the
representation space for each training instance.

In this paper, we propose Domain Confused Con-
trastive Learning (DCCL) to encourage the model
to learn similar representations for the original sen-
tence and its curated domain-confused version with
contrastive loss. More specifically, we synthesize
these domain puzzles by utilizing adversarial ex-
amples (Zhu et al., 2020; Jiang et al., 2020). The
algorithm will search for an extreme direction that
roughly points to the opposite domain and produces
most domain-challenging puzzles. We encourage
the model to encode original and domain-confused
samples closer, gradually pulling examples to the
domain decision boundary as training progresses
via CL, thus learning the domain invariance. Fur-
thermore, in order to investigate whether CL neces-

sarily benefits UDA, we conduct experiments and
find that constructing domain puzzles as paired pos-
itive samples is favorable for UDA, however, other
data augmentation methods such as back transla-
tion (Sennrich et al., 2016; Edunov et al., 2018)
do not have the same effect. The experiment re-
sults show that the proposed DCCL significantly
outperforms all the baselines. We also conduct
quantitative experiments to measure the domain
discrepancy after adaptation demonstrating that
DCCL can decrease the divergence between do-
mains in a self-supervised way. Overall, the paper
makes the following contributions:

• First, a new concept of domain puzzles is put
forward. We propose to craft the domain puz-
zles via domain-confused adversarial attack;

• Second, we propose DCCL, which is able to
pull source and target samples closer to the
crafted domain puzzles. The DCCL is capable
of reducing domain shift and learning domain
invariance;

• Third, experiments demonstrate that the pro-
posed DCCL surpasses baselines with a large
margin. We also conduct analyzing experi-
ments to verify the effectiveness.

2 Preliminaries

2.1 Unsupervised Domain Adaptation

Problem Setup Suppose we have access to a
source dataset with n labeled data points DS =
{xi, yi}1,...,n sampled i.i.d. from the source do-
main, and a target dataset with m unlabeled points
DT = {xj}1,...,m sampled i.i.d. from the target
domain, where xi, xj are sequences of tokens, yi
is the class label for xi. For in-domain training
with labeled training instances, the model aims to
learn a function f(x; θf , θy) : x → C. θf is the
parameter of the deep neural network encoder (e.g.,
pretrained language model), θy denotes parameters
that compute the network’s class label predictions,
and C is the label set. The model is learned with
the following objective:

min
θf ,θy

∑
(x,y)∼DS

[L(f(x; θf , θy), y)]. (1)

However, for Unsupervised Domain Adaptation
(UDA), the goal of the adaptation algorithm is to
learn a discriminative classifier from the source
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Figure 2: Overview of the framework of the proposed method DCCL.

domain, which at the same time could general-
ize well on the target domain by leveraging un-
labeled target data and learning a mapping between
source and target domains. It is generally acknowl-
edged that the discrepancy between two datasets
(domain shift) can be reduced by aligning two dis-
tributions (Ben-David et al., 2006; Ben-David et al.,
2010). The methods that learn domain invariant fea-
tures for domain alignment include KL divergence
(Zhuang et al., 2015), Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012), and Domain
Adversarial Neural Network (DANN) (Ganin et al.,
2016) (details of DANN can be found in Appendix.
B). DANN suffers from a vanishing gradient prob-
lem (Shen et al., 2018), and the training process is
unstable (Shah et al., 2018; Du et al., 2020). Hence,
more efficient and stable algorithms are essential
for UDA (Wu et al., 2019b).

2.2 Adversarial Training

Adversarial training with perturbations has been
shown to significantly improve the performance
of the state-of-the-art language models for many
natural language understanding tasks (Madry et al.,
2018; Zhu et al., 2020; Jiang et al., 2020; Pereira
et al., 2021). The algorithm generally considers
adversarial attacks with perturbations to word em-
beddings and minimizes the resultant adversarial
loss around the input samples. In a single domain,
adversarial training (Goodfellow et al., 2015) is an
inner max, outer min adversarial problem with the
objective:

min
θf ,θy

∑
(x,y)∼D

[max
δ

L(f(x+δ; θf , θy), y)]. (2)

With (2), the standard adversarial training can also
be regularized using virtual adversarial training
(Miyato et al., 2018), which encourages smooth-
ness in the embedding space. The αadv controls
the trade-off between the two losses, usually set to

be 1.

min
θf ,θy

∑
(x,y)∼D

[
L(f(x; θf , θy), y) + αadv

max
δ

L(f(x+ δ; θf , θy), f(x; θf , θy))
]
.

(3)

For (2)(3), the inner maximization can be solved
by Projected Gradient Decent (PGD) (Madry et al.,
2018) with an additional assumption that the loss
function is locally linear. A following iteration can
approximate the adversarial perturbation δ:

δt+1 = Π∥δ∥F≤ϵ(δt + η
gadvy (δt)

∥gadvy (δt)∥F

), (4)

gadvy (δt) = ∇δ L(f(x+ δt; θf , θy), y), (5)

where Π∥δ∥F≤ϵ performs a projection onto the ϵ-
ball. The advantages of PGD lie in that it only relies
on the model itself to produce diverse adversarial
samples, enabling the model to generalize better to
unseen data.

3 Method

In this section, we focus our discussions on the
proposed Domain Confused Contrastive Learning
(DCCL) under a sentiment classification scenario.
The overall framework of our method is illustrated
in Fig. 2. The model will take source labeled and
target unlabeled sentences as input. It will then
augment the input data with domain puzzles by
fabricating adversarial perturbations. With the aug-
mented data, the next step produces a hidden repre-
sentation for each instance with an encoder which
will be further used to produce three losses to train
the entire model, namely sentiment classification
loss, contrastive loss and consistency loss.

3.1 Crafting domain puzzles
For UDA, Saito et al. (2017) mentions that simply
matching the distributions cannot ensure high accu-
racy on the target domain without the target labels.
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this book never ages, it is sincerely ageless

this [MASK] never ages, it is sincerely ageless

this [MASK] will not go out of styles

this music will not go out of styles

source 
domain:

target 
domain:

domain 
puzzles:

Figure 3: Two sentences sampled from Book and Music
reviews. Alternatively, we can match original sentences
with its degraded masked versions.

Moreover, it may cause negative transfer, deteri-
orating knowledge transfer from source domain
to the target domain (Wang et al., 2019). Even if
the matched sentences have the same label, due to
huge syntactic and semantic shift, instance-based
matching strategies that align examples from differ-
ent domains will introduce noises for pre-trained
language models, for example, aligning source do-
main and target domain sentences in Fig. 3.

Alternatively, we can locate and mask domain-
specific tokens which are related to sentence topics
and genres. Since sentences in the green box of
Fig. 3 become domain-agnostic, we refer to those
domain-confused sentences (one cannot tell which
domain these sentences belong to) as domain puz-
zles. Matching distributions between the source
domain and the domain puzzles, as well as the
target domain and the domain puzzles, will also
make language models produce domain invariant
representations.

However, the domain-specific tokens are not al-
ways evident, due to the discrete nature of natural
languages, it is challenging to decide correct tokens
to mask without hurting the semantics especially
when the sentences are complicated1. Hence, we
seek domain puzzles in the representation space
and introduce adversarial perturbations, because
we can rely on the model itself to produce diverse
but targeted domain puzzles. Note that the pur-
pose of adversarial attack here is not to enhance the
robustness, but to construct exquisitely produced
perturbations for a better domain invariance in the
representation space.

To generate domain-confused augmentations,
we adopt adversarial attack with perturbations for
domain classification. The loss for learning a do-
main classifier with adversarial attack can be speci-

1Masking is not our focus in this paper. More detailed im-
plementation can be found in section 4.4. We will investigate
how to extract better domain tokens in our future work.

domain decision 
boundary

(a) Postive sampling

in-domain and cross-domain
negative sampling

in-domain
negative sampling

Source Domain 
puzzles

Target

(b) Negative sampling

Figure 4: Proposed adaptation sampling method

fied as follows:

Ldomain = L(f(x; θf , θd), d)+
αadv L(f(x+ δ; θf , θd), f(x; θf , θd)), (6)

δ = Π∥δ∥F≤ϵ(δ0 + η
gadvd (δ0)

∥gadvd (δ0)∥F

), (7)

where δ0 is the initialized noise, θd is the parameter
corresponding to the computation of the domain
classification, and d is the domain label. Due to ad-
ditional overhead incurred during fine-tuning large
pre-trained language models, the number of itera-
tions for perturbation estimation is usually 1 (Jiang
et al., 2020; Pereira et al., 2021), as shown in Eq. 7.
We synthesize the perturbation δ by searching for
an extreme direction that perplexes the domain clas-
sifier most in the embedding space, and f(x+δ; θf )
is the crafted domain puzzles encoded by the lan-
guage model.

3.2 Learning invariance with domain puzzles
After acquiring domain puzzles, simply applying
distribution matching will sacrifice discriminative
knowledge learned from the source domain (Saito
et al., 2017; Lee et al., 2019), and instance-based
matching will also overlook global intra-domain in-
formation. To learn sentiment-wise discriminative
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representations in the absence of the target labels,
we propose to learn domain invariance via con-
trastive learning (CL). In general, CL benefits from
the definition of the augmented positive and neg-
ative pairs by treating instances as classes (Chen
et al., 2020a; Khosla et al., 2020; He et al., 2020;
Chen et al., 2020b). Furthermore, the contrastive
loss encourages the positive pairs to be close to
each other and negative pairs to be far apart. Specif-
ically, maximizing the similarities between positive
pairs learns an invariant instance-based representa-
tion, and minimizing the similarities between nega-
tive pairs learns a uniformly distributed represen-
tation from a global view, making instances gath-
ered near the task decision boundary away from
each other (Saunshi et al., 2019; Grill et al., 2020).
This will help to enhance task discrimination of the
learned model.

For positive pairs, intuitively, we hope that the
model could encode the original sentence and most
domain-challenging examples to be closer in the
representation space, gradually pulling examples
to the domain decision boundary as training pro-
gresses. For negative sampling, it widens the
sentiment decision boundary and promotes better
sentiment-wise discriminative features for both do-
mains. However, for cross-domain negative sam-
pling, the contrastive loss may push the negative
samples in the target (source) domain away from
the anchor in the source (target) domain (see Fig. 4
(b) left). This is contradictory to the objective of
domain puzzles which try to pull different domains
closer. To avoid the detriment of cross-domain re-
pulsion, excluding samples with different domains
from the negative set is of great importance. There-
fore, we write the following contrastive infoNCE
loss (Chen et al., 2020a) as follow:

Lcontrast = − 1

N

N∑

i

log
exp(s(zi, z

′
i)/τ)∑N

k 1k ̸=i exp(s(zi, zk)/τ)
, (8)

where N is the mini batch size with samples from
the same domain, zi = g(f(xi; θf )), and g(·)
is one hidden layer projection head. We denote
x′ = x+δ as the domain puzzle augmentation, s(·)
computes cosine similarity, 1k ̸=i is the indicator
function, and τ is the temperature hyperparameter.

3.3 Consistency Regularization
Given perturbed embedding x+ δ, which is crafted
based on domain classification, we also encourage
the model to produce consistent sentiment predic-
tions with that of the original instance f(x; θf , θy).

Algorithm 1 DCCL
Input: For simplicity, θ is the parameter of the

whole model. T : the total number of iterations,
(x, y) ∼ DS : source dataset with sentiment
label y, (x, d) ∼ DS DD: source and target
dataset with domain label d, K: the number
of iterations for updating δ, σ2: the initialized
variance, ϵ: perturbation bound, η: the step
size, γ: global learning rate, N : batch size, τ :
temperature, g(·):one hidden layer projection
head. αadv, α, λ and β: weighting factor.

1: for epoch = 1, .., T do
2: for minibatch N do
3: δ ← N (0, σ2I)

4: for m = 1, ..,K do
5: gadvd ← ∇δ L(f(x+ δ; θ), d)

6: δ ← Π∥δ∥F≤ϵ(δ + ηgadvd /∥gadvd ∥F )
7: end for
8: Ldomain ← L(f(x; θ), d)

+αadv L(f(x+ δ; θ), d)

9: z = g(f(x; θ))

10: z′ = g(f(x+ δ; θ))

11: for i = 1, ..., N and j = 1, ..., N do
12: s′i = z⊤i z′j/∥zi∥∥z′j∥
13: si,j = z⊤i zj/∥zi∥∥zj∥
14: end for
15: Lcontrast ← − 1

N

N∑
i

log
exp(s′i/τ)∑N

j 1j ̸=i exp(si,j/τ)

16: Lconsist ← L(f(x; θ), f(x+ δ; θ))

17: gθ ← ∇θ L(f(x; θ), y) + α∇θ Ldomain

+λ∇θ Lcontrast +β∇θ Lconsist

18: θ ← θ − γgθ

19: end for
20: end for
Output: θ

For this, we minimize the symmetric KL diver-
gence, which is formulated as:

Lconsist = L(f(x; θf , θy), f(x+ δ; θf , θy)). (9)

For overall training objective, we train the neural
network in an end-to-end manner with a weighted
sum of losses as follows.

min
θf ,θy,θd

∑

(x,y)∼DS

L(f(x; θf , θy), y)+

∑

(x,y)∼DS ,DT

[αLdomain +λLcontrast +β Lconsist].
(10)

Details of proposed DCCL are summarized in Al-
gorithm 1.
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4 Experiments

4.1 Datasets
Amazon Benchmark (Blitzer et al., 2007)2. We
conduct experiments on this dataset for complete-
ness since most of previous works report results
on it. The dataset contains four domains: Book
(BK), DVD (D), Electronics (E) and Kitchen house-
wares (K). There are 2,000 balanced labeled data
for each domain, we randomly select 20,000 unla-
beled reviews for BK, D and E. For K, only 17,856
unlabeled reviews are available.
Amazon review dataset (He et al., 2018)3. This
dataset considers neutral instances which may not
bias the dataset and bring more challenges4. The
dataset also contains four domains: Book (BK),
Electronics (E), Beauty (BT), and Music (M). Fol-
lowing He et al. (2018), we treat set 1 as labeled
dataset containing 6, 000 instances, and treat set
2 as unlabeled dataset which also contains 6, 000
instances. More details about two datasets can be
found in Appendix A.

4.2 Experiment Settings
For unsupervised adaptation setting, we should not
have access to target labeled data at the training
phase, so trained models with minimum classifica-
tion error on the source validation set is saved for
evaluation. At this point, we suppose a good model
that generalizes well on the target domain is able to
reach high performance on both validation and test
set at the same time. We evaluate our model with 5
runs in all experiments, and we report the average
score, standard deviation and paired t-test results.

4.3 Implementation Details
For pre-trained language model, we use BERT base
uncased (Devlin et al., 2019) as the basis for all
experiments. The max length is set to 512. For
optimizer, we use AdamW (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019) with weight decay
0.01 (for BERT baseline, we set 1e-4). We set the
learning rate as 1e-5, and we use a linear scheduler
with warm-up steps 0.1 of total training steps.

We set the number of adversarial iterations to
be 1, adversarial weighting factor αadv = 1 and
we use l2 norm to compute projections. We also

2https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
3https://github.com/ruidan/DAS
4The original crawled reviews contain star ratings (1 to 5

stars). Comparing with Amazon Benchmark which discards
the neutral class, this dataset labels them with rating < 3, > 3,
= 3 as negative, positive, and neutral respectively.

follow Zhu et al. (2020) to set other adversarial hy-
perparameters, e.g., adversarial step size η = 5e-2,
perturbation bound ϵ = 5e-2. For weighting factors,
we set α = 1e-3, λ = 3e-2 and β = 5. We train the
model with 8 epochs, temperature τ and batch size
N will be discussed later. Each adaptation requires
half one hour on one A-100.

4.4 Baselines

BERT base: Fine-tune BERT on the source, with-
out using target unlabeled data, then directly eval-
uate on the target labeled data. KL: Use sym-
metric KL-divergence loss of embedded instances
between the source and target domains (Zhuang
et al., 2015). MMD: Maximum Mean Discrepancy
loss (Gretton et al., 2012) measures the distance
based on the notion of embedding probabilities
in a reproducing kernel Hilbert space. We imple-
ment a gaussian kernel which is a common choice.
DANN: The adaptation rate is λ = 2

1+exp(−γp) − 1,
p = t

T , where t and T are the number of cur-
rent training steps and total steps. γ requires
careful tuning within [0.05, 0.1, 0.15, 0.2]. back-
trans+CL: To investigate the effectiveness of do-
main puzzles, we implement Back translation (Sen-
nrich et al., 2016; Edunov et al., 2018), which is
one of the widely used data augmentation tech-
niques. We utilize en-de translation model pre-
trained on WMT19 and released in fairseq (Ott
et al., 2019). The model is trained with con-
trastive loss on the source and target domain re-
spectively. mask+CL: We mask domain specific
tokens to make the augmentation become domain-
agnostic. Since information extraction is not our
focus, we identify domain specific tokens via a
simple frequency-ratio method (Li et al., 2018; Wu
et al., 2019a): s(u, d) = count(u,Dd)+λ∑

d′∈D,d′ ̸=d count(u,Dd′ )+λ
,

where count(u,Dd) represents the number of
times a token u appears in domain d. Smoothing λ
is set to 1. When s(u, d) is larger than 5, we mark
a token u as a domain specific token. Through
counting, the number of masked tokens accounted
for 0.06 of the total length. mask: To investigate
the effectiveness of contrastive loss, after masking
domain-specific tokens, we further let the model
train with augmented data without contrastive loss.
R-PERL (Ben-David et al., 2020) is a pivot-based
method, and DAAT (Du et al., 2020) combines
DANN and post-training. All the methods in Tabel
1 and Table 2 are implemented based on BERT
model for fair comparisons.
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Method E→BK BT→BK M→BK BK→E BT→E M→E BK→BT E→BT M→BT BK→M E→M BT→M Ave.
BERT base 64.34∗1.3 65.87∗1.9 64.12∗1.7 52.25∗1.8 66.01∗1.0 59.49∗1.1 55.01∗1.7 66.02∗1.3 56.50∗2.1 55.66∗1.5 61.34∗0.8 62.34∗1.2 60.741.5
KL 64.77∗0.8 67.03∗0.7 65.13∗1.0 56.96∗1.2 65.43∗1.5 60.30∗0.7 58.47∗0.9 66.22∗0.5 58.80∗1.3 57.53∗0.7 60.02∗1.4 64.41∗1.1 62.091.0
MMD 65.41∗0.7 68.54∗1.1 64.77∗1.3 58.84∗1.6 66.39∗1.5 59.29∗1.9 60.75∗1.5 66.50∗0.9 57.42∗1.3 59.37∗1.4 59.47∗1.0 65.03∗1.6 62.651.3
DANN 66.43∗2.4 67.74∗2.9 65.64∗3.7 54.31∗4.1 65.93∗3.0 59.91∗1.9 58.11∗3.5 67.19∗0.5 56.00∗2.7 54.02∗2.9 60.36∗3.1 63.09∗2.7 61.562.8
back-trans+CL 67.16∗1.4 68.31∗0.8 67.78∗1.8 59.55∗1.1 66.51∗0.3 60.13∗1.4 60.92∗0.7 68.54∗0.8 60.44∗0.9 60.21∗1.1 61.73∗1.3 64.29∗0.7 63.791.0
mask 65.17∗1.1 66.91∗1.4 65.59∗0.9 52.74∗1.5 67.14∗1.9 60.48∗0.7 54.76∗1.6 66.50∗1.4 56.61∗1.7 55.64∗1.6 62.17∗0.9 63.09∗1.0 61.401.3
mask+CL 68.80∗1.2 69.93∗0.7 70.65∗0.9 60.50∗1.3 68.020.7 60.80∗1.2 62.17∗0.8 69.170.5 62.06∗1.5 60.56∗1.4 63.940.7 65.400.6 65.170.9
DCCL 70.330.3 70.920.6 71.110.7 62.360.7 68.410.2 62.110.6 64.131.4 69.330.4 65.400.8 64.671.7 64.671.0 66.701.4 66.680.8

Table 1: Accuracy (%) results of Amazon review dataset. For example, E→BK denotes training on Electronics (E)
and adapting to Book (BK). All the results are reported with average and standard deviation in 5 runs. ∗ indicates
the DCCL improvements are significant with p < 0.05. There are four domains available in the dataset, therefore
we have 12 adaptation groups of tasks.

Method D→BK K→BK E→BK BK→D K→D E→D BK→K D→K E→K BK→E D→E K→E Ave.
R-PERL 85.6 83.0 83.9 87.8 85.6 84.8 90.2 90.4 91.2 87.2 89.3 91.2 87.5
DAAT 90.86 87.98 88.91 89.70 88.81 90.13 90.75 90.50 93.18 89.57 89.30 91.72 90.12
BERT base 89.76∗0.3 88.31∗0.4 88.09∗0.9 89.27∗0.5 87.68∗0.8 88.41∗1.2 88.27∗0.4 87.67∗0.5 92.160.7 87.18∗0.4 86.91∗0.7 91.220.8 88.740.6
KL 89.23∗0.5 87.61∗0.5 88.37∗0.7 89.49∗0.6 88.03∗0.5 88.56∗0.7 88.77∗0.5 87.89∗0.7 91.211.3 88.62∗0.4 87.03∗0.9 90.34∗1.5 88.760.7
MMD 88.68∗0.7 88.610.3 88.27∗1.0 88.38∗1.0 89.090.5 89.31∗0.6 87.74∗0.8 89.04∗0.8 91.201.0 89.49∗0.3 88.70∗0.5 89.79∗1.2 89.030.6
DANN 88.64∗1.3 86.09∗1.7 87.91∗1.5 89.561.0 89.110.9 89.19∗1.1 89.68∗1.3 88.73∗1.8 91.41∗1.3 87.30∗1.6 88.53∗0.6 90.81∗1.1 88.911.3
mask+CL 90.740.3 88.280.7 89.44∗0.4 90.310.2 88.74∗0.5 89.72∗0.8 90.40∗0.4 89.57∗0.4 92.490.4 89.91∗0.3 89.650.4 91.190.6 90.080.5
DCCL 91.170.3 88.530.4 89.700.5 90.030.4 89.530.3 90.490.5 91.050.5 90.780.4 92.540.5 90.420.3 89.550.4 91.930.5 90.480.4

Table 2: Accuracy (%) results of Amazon Benchmark. Results of R-PERL and DAAT are taken from Ben-David
et al. (2020) and Du et al. (2020) respectively.

4.5 Results

Will contrastive learning necessarily help the
Unsupervised Domain Adaptation?
As discussed earlier, when performing contrastive
learning on source labeled examples and target un-
labeled examples respectively, it learns a uniformly
distribute representation and helps promote better
discriminative features for both domains. However,
for some adaptation tasks in Table 1, for example,
BT→E, M→E, and E→M, back-trans+CL shows
that contrastive learning only gains marginal ben-
efit. When masking domain-specific tokens and
pulling original sentence representations to those
domain puzzles, the effect of contrastive learning
becomes more apparent (mask+CL with average
score 65.17 compared with back-trans+CL 63.79
and mask 61.40 in Table.1). This finding helps
to explain that choices of positive examples are
critical and domain confused augmentations will
further benefit adaptation.

DCCL outperforms baselines.
From Table 1 we can observe that the proposed
DCCL outperforms all other methods with a large
margin and p < 0.05 using paired t-test, and 5.94%
improvement over BERT base. From Table 2, we
can also observe 1.74% improvement over BERT
base, and DCCL also surpasses state-of-the-art

methods R-PERL (Ben-David et al., 2020) and
DAAT (Du et al., 2020). We note that Amazon
Benchmark dataset is quite easy, since it discards
neutral instances, BERT base model has already
achieved high scores on this dataset. Besides, we
observe that the effect of distribution matching
methods (KL and MMD) is limited on two datasets.
The reason might be that pre-trained language mod-
els trained with massive and heterogeneous corpora
already have strong generalization ability. Learn-
ing such cross-domain and instance-based match-
ing will bring perplexity to language models and
sacrifice task discrimination (Saito et al., 2017; Lee
et al., 2019). On the contrary, the proposed DCCL
retains such information in a self-supervised way.
Furthermore, we notice that DANN is very unsta-
ble, besides adaptation rate λ, the model is also
sensitive to other hyperparameters such as learning
rate and training epochs because the performance
on the target domain will keep decreasing when
training with longer steps. Hence, it is difficult
for the model to achieve the lowest error rates on
both the source and target domains simultaneously.
Compared to DANN, DCCL is much more stable
and has lower standard deviations on most adapta-
tion tasks.

Contrastive learning designs.
We explore different hyperparameter values for the
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Figure 5: Hyperparameters for contrastive learning

proposed DCCL in E→BK, as is shown in Fig. 5.
We find that a temperature of 0.5 combined with
the batch size 32 can achieve the best performance.
We also notice that setting the temperature too high
or too low can significantly affect adaptation per-
formances, while a larger batch size usually brings
a relatively smaller improvement.

4.6 Ablation Studies

We conduct an ablation study on each component
in Eq. 10 to inspect the contribution of contrastive
learning, as is shown in Table 3. We can see that
every single component can render a better adapta-
tion performance. In particular, the effectiveness of
Lcontrast is observable with 3~5 performance gain
compared to baselines (row 4 vs. row 2, and row 5
vs. row 3). When training curated domain puzzles
as simple augmentations without contrastive loss,
we can observe only a slight improvement (row 2
vs. row 1). This result demonstrates that the perfor-
mance gain brought by DCCL does not come from
data augmentation, and learning robustness against
adversarial attacks will not largely help adaptation.

Ldomain Lconsist Lcontrast E→BK M→BT
64.65 55.85√
67.23 58.9√ √
67.85 59.1√ √
70.12 64.73√ √ √
70.21 64.87

Table 3: Ablation studies of DCCL on each component

5 Analysis

5.1 Visualization

We perform visualizations for trained representa-
tions as illustrated in Fig. 6. When training with the
source domain and then adapting to the target do-
main (BERT-base), we can observe a considerable

domain shift for BERT encoder on this amazon
review dataset. Moreover, as mentioned before,
continuing training DANN with larger epochs will
substantially drop the score (from the highest point
(DANN-best) to the lowest point (DANN-worst)).
However, we can also see that DCCL mitigates
domain shift but remains good sentiment discrimi-
nation on the target domain.

BERT-base acc 64.7 DANN-best acc 68.25

DANN-worst acc 33.75 DCCL acc 70.15

source negative source neutral source positive
target negative target neutral target positive

Figure 6: t-SNE visualization for E→BK task

5.2 Quantitative Results

A-distance measures domain discrepancies (Ben-
David et al., 2006; Ben-David et al., 2010), with
the definition as dA = 2(1 − 2ϵ), where ϵ is the
domain classification error. To fairly compare with
A-distance of the baselines, we use linear SVM to
calculate ϵ following previous work (Saito et al.,
2017; Du et al., 2020). We randomly select 2,000
instances for both source and target domain and
split them with 1:1 for train and test for the SVM
model. From Fig. 7, we can observe that DCCL
can learn a good balance between sentiment clas-
sification and domain discrepancy, compared to
DANN-best and DANN-worst.

6 Related Work

Unsupervised Domain Adaptation
UDA in NLP has the following approaches: (1)
Pivot-based methods use unlabeled data from both
domains, trying to discover characteristics that are
similar (Pan et al., 2010). Some recent works
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Figure 7: A-distance for E→BK and M→BT tasks

extend pivots with autoencoders and contextual-
ized embeddings (Ziser and Reichart, 2017; Miller,
2019; Ben-David et al., 2020). (2) Pseudo-labeling
leverages a trained classifier to predict labels on
unlabeled examples, which are subsequently con-
sidered as gold labels (Yarowsky, 1995; Zhou and
Li, 2005; McClosky et al., 2006). Recent works
also combine this technique with pre-trained lan-
guage models (Lim et al., 2020; Ye et al., 2020).
(3) Data selection methods adopt domain similarity
metrics to find the best match for each data and use
curriculum learning for large pre-trained models
(Ma et al., 2019; Aharoni and Goldberg, 2020). A
recent method adopt distance-bandit (Guo et al.,
2020) for similarity metric. (4) Domain Adversar-
ial Neural Networks (Ganin et al., 2016). Some ap-
proaches leverage Wasserstein distance to stabilize
adversarial training (Shen et al., 2018; Shah et al.,
2018), and combine it with post-training which can
produce better adversarial results (Du et al., 2020).
(5) Adaptive pre-training is a more straightforward
but effective method (Gururangan et al., 2020; Han
and Eisenstein, 2019; Karouzos et al., 2021) by
leveraging the objective of masked language model
(MLM). A wide range of pre-training methods for
domain adaptation (multi-phase, multi-task) are put
forward (Han and Eisenstein, 2019; Karouzos et al.,
2021).

Contrastive learning
CL has recently gained popularity as a reliable ap-
proach for unsupervised representation learning. It
is generally acknowledged that a good representa-
tion should distinguish itself from other instances
while identifying similar instances. For Computer
Vision, there are approaches obtaining augmented
images using transformations including cropping,
rotation, etc. (Chen et al., 2020a; Khosla et al.,
2020; He et al., 2020; Chen et al., 2020b). As for
Natural Language Processing, many works study
different label-preserving augmentations, such as
back-translations, synonyms, adversaries, dropout,

and their combinations (Qu et al., 2021; Gao et al.,
2021). In addition, many pre-trained language mod-
els trained with contrastive loss are also released.
DeCLUTR (Giorgi et al., 2021) and CLEAR (Wu
et al., 2020) jointly train the model with a con-
trastive objective and a masked language model
setting. ConSERT (Yan et al., 2021) overcomes
the collapse problem of BERT-derived sentence
representations and makes them more suitable for
downstream applications by using unlabeled texts.

7 Conclusion

In this work, we put forward a new concept, domain
puzzles, which can be crafted through domain-
specific token mask and domain-confused adver-
sarial attacks. And we provide a more stable and
effective solution to learn domain invariance for
unsupervised domain adaptation. The proposed
method DCCL surpasses baselines with a large
margin by mitigating domain shift without losing
discriminative power on the target domain. More-
over, the proposed framework can also be extended
to other NLP tasks demanding adaptations, and we
leave this for future work.
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A Datasets

We obtain the Amazon review datasets from He
et al. (2018). This dataset does not remove neu-
tral labels and will not be problematic in UDA
situation where the label information of the tar-
get domain is not available. In addition, reserving
neutral labels also bring challenges for pre-trained
language model, making it more favorable for self-
supervised representation learning. Summary of
this dataset is availble in Table 4.

Domain #Neg #Neu #Pos Total

Book
Set 1 2000 2000 2000 6000
Set 2 513 663 4824 6000

Electronics
Set 1 2000 2000 2000 6000
Set 2 694 489 4817 6000

Beauty
Set 1 2000 2000 2000 6000
Set 2 616 675 4709 6000

Music
Set 1 2000 2000 2000 6000
Set 2 785 774 4441 6000

Table 4: Amazon review dataset

Each domain contains two sets, set 1 contains
6000 instances with balanced class labels, and set 2
contains instances that are randomly sampled from
the larger dataset (McAuley et al., 2015), preserv-
ing authentic label distribution, examples in these
two datasets do not overlap. Following (He et al.,
2018), we use set 1 from the source domain as the
training set for all our experiments. Since label dis-
tribution in the target domain is unpredictable and
out of control in real life, so it’s more reasonable to
use set 2 from the target domain as the unlabeled
set, lastly the model will be evaluated in set 1 from
target domain. For data split, we randomly sample
1000 instances from the source labeled dataset as
validation set. When running UDA experiments,
the model will train on 5000 source labeled ex-
amples and 6000 target unlabeled examples, then
validate on 1000 source labeled examples.

For Amazon Benchmark(Blitzer et al., 2007), it
also contains four domains: Book (BK), DVD (D),
Electronics (E) and Kitchen housewares (K). There
are 2000 balanced labeled data for each domain,
we randomly select 20000 unlabeled reviews for
BK, D and E. For K, only 17856 unlabeled reviews
are available, statistics of Amazon Benchmark can
be find in Table.5. For data split, 1600 balanced
samples are randomly sampled from the source
labeled dataset, and 400 for validation.

Domains Labeled Unlabeled
Book 2000 973194
Dvd 2000 122438
Electronics 2000 21009
Kitchen & housewares 2000 17856

Table 5: Amazon Benchmark statistics

B DANN

Domain Adversarial Neural Network Ganin et al.
(2016) proposes Domain Adversarial Neural Net-
work (DANN), which learns domain invariant and
discriminative features simultaneously. This ap-
proach is motivated by the idea that an adapta-
tion algorithm could learn good representations for
cross-domain transfer if it cannot differentiate the
domain of the input observations. The optimization
objective is:

min
θf ,θy

∑

(x,y)∼DS

[L(f(x; θf , θy), y) + λRθf ], (11)

Rθf = max
θd

∑

(x,d)∼DS ,DT

[−L(f(x; θf , θd), d)],

(12)

where θd is the parameter corresponding to the
computation of the domain classification, d is the
domain label, Rθf is a regularizer weighted by λ.
Objective (11) learns task discrimination by min-
imizing task classification loss and tries to make
features similar across domains by maximizing the
domain classification loss.

Although the domain classifier with parameters
θd could perfectly classify different domains, the
balance between two terms in (11) is hard to main-
tain. Hence, the training process becomes unsta-
ble, requiring an elaborate adaptation rate λ tuning
(Shen et al., 2018; Shah et al., 2018; Du et al.,
2020). Furthermore, the encoder could learn trivial
solutions (Karouzos et al., 2021) which produce
features with flipped domain predictions.
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